Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38334651

RESUMO

Primary cilia are hair-like structures found on nearly all mammalian cell types, including cells in the developing and adult brain. A diverse set of receptors and signaling proteins localize within cilia to regulate many physiological and developmental pathways, including the Hedgehog (Hh) pathway. Defects in cilia structure, protein localization, and function lead to genetic disorders called ciliopathies, which present with various clinical features that include several neurodevelopmental phenotypes and hyperphagia-associated obesity. Despite their dysfunction being implicated in several disease states, understanding their roles in central nervous system (CNS) development and signaling has proven challenging. We hypothesize that dynamic changes to ciliary protein composition contribute to this challenge and may reflect unrecognized diversity of CNS cilia. The proteins ARL13B and ADCY3 are established markers of cilia in the brain. ARL13B is a regulatory GTPase important for regulating cilia structure, protein trafficking, and Hh signaling, and ADCY3 is a ciliary adenylyl cyclase. Here, we examine the ciliary localization of ARL13B and ADCY3 in the perinatal and adult mouse brain. We define changes in the proportion of cilia enriched for ARL13B and ADCY3 depending on brain region and age. Furthermore, we identify distinct lengths of cilia within specific brain regions of male and female mice. ARL13B+ cilia become relatively rare with age in many brain regions, including the hypothalamic feeding centers, while ADCY3 becomes a prominent cilia marker in the mature adult brain. It is important to understand the endogenous localization patterns of these proteins throughout development and under different physiological conditions as these common cilia markers may be more dynamic than initially expected. Understanding regional- and developmental-associated cilia protein composition signatures and physiological condition cilia dynamic changes in the CNS may reveal the molecular mechanisms associated with the features commonly observed in ciliopathy models and ciliopathies, like obesity and diabetes.


Assuntos
Ciliopatias , Proteínas Hedgehog , Animais , Feminino , Masculino , Camundongos , Fatores de Ribosilação do ADP/metabolismo , Encéfalo/metabolismo , Proteínas Hedgehog/metabolismo , Mamíferos/metabolismo , Obesidade
2.
Ann Hum Genet ; 88(1): 27-44, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37427745

RESUMO

Primary cilia play critical roles in regulating signaling pathways that underlie several developmental processes. In the nervous system, cilia are known to regulate signals that guide neuron development. Cilia dysregulation is implicated in neurological diseases, and the underlying mechanisms remain poorly understood. Cilia research has predominantly focused on neurons and has overlooked the diverse population of glial cells in the brain. Glial cells play essential roles during neurodevelopment, and their dysfunction contributes to neurological disease; however, the relationship between cilia function and glial development is understudied. Here we review the state of the field and highlight the glial cell types where cilia are found and the ciliary functions that are linked to glial development. This work uncovers the importance of cilia in glial development and raises outstanding questions for the field. We are poised to make progress in understanding the function of glial cilia in human development and their contribution to neurological diseases.


Assuntos
Cílios , Neurônios , Humanos , Cílios/metabolismo , Neurônios/metabolismo , Transdução de Sinais
3.
Cells ; 12(19)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37830570

RESUMO

ADP-ribosylation factor-like protein 13B (ARL13B), a regulatory GTPase and guanine exchange factor (GEF), enriches in primary cilia and promotes tumorigenesis in part by regulating Smoothened (SMO), GLI, and Sonic Hedgehog (SHH) signaling. Gliomas with increased ARL13B, SMO, and GLI2 expression are more aggressive, but the relationship to cilia is unclear. Previous studies have showed that increasing ARL13B in glioblastoma cells promoted ciliary SMO accumulation, independent of exogenous SHH addition. Here, we show that SMO accumulation is due to increased ciliary, but not extraciliary, ARL13B. Increasing ARL13B expression promotes the accumulation of both activated SMO and GLI2 in glioma cilia. ARL13B-driven increases in ciliary SMO and GLI2 are resistant to SMO inhibitors, GDC-0449, and cyclopamine. Surprisingly, ARL13B-induced changes in ciliary SMO/GLI2 did not correlate with canonical changes in downstream SHH pathway genes. However, glioma cell lines whose cilia overexpress WT but not guanine exchange factor-deficient ARL13B, display reduced INPP5e, a ciliary membrane component whose depletion may favor SMO/GLI2 enrichment. Glioma cells overexpressing ARL13B also display reduced ciliary intraflagellar transport 88 (IFT88), suggesting that altered retrograde transport could further promote SMO/GLI accumulation. Collectively, our data suggest that factors increasing ARL13B expression in glioma cells may promote both changes in ciliary membrane characteristics and IFT proteins, leading to the accumulation of drug-resistant SMO and GLI. The downstream targets and consequences of these ciliary changes require further investigation.


Assuntos
Cílios , Glioma , Humanos , Cílios/metabolismo , Glioma/genética , Glioma/metabolismo , Proteínas Hedgehog/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Receptor Smoothened/metabolismo
4.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577625

RESUMO

Cilia are near ubiquitous small, cellular appendages critical for cell-to-cell communication. As such, they are involved in diverse developmental and homeostatic processes, including energy homeostasis. ARL13B is a regulatory GTPase highly enriched in cilia. Mice expressing an engineered ARL13B variant, ARL13BV358A which retains normal biochemical activity, display no detectable ciliary ARL13B. Surprisingly, these mice become obese. Here, we measured body weight, food intake, and blood glucose levels to reveal these mice display hyperphagia and metabolic defects. We showed that ARL13B normally localizes to cilia of neurons in specific brain regions and pancreatic cells but is excluded from these cilia in the Arl13bV358A/V358A model. In addition to its GTPase function, ARL13B acts as a guanine nucleotide exchange factor (GEF) for ARL3. To test whether ARL13B's GEF activity is required to regulate body weight, we analyzed the body weight of mice expressing ARL13BR79Q, a variant that lacks ARL13B GEF activity for ARL3. We found no difference in body weight. Taken together, our results show that ARL13B functions within cilia to control body weight and that this function does not depend on its role as a GEF for ARL3. Controlling the subcellular localization of ARL13B in the engineered mouse model, ARL13BV358A, enables us to define the cilia-specific role of ARL13B in regulating energy homeostasis.

5.
bioRxiv ; 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37214942

RESUMO

During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous Hh pathway activation in the primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO, and the ensuing PKA-C binding and inactivation, are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.

6.
Dev Biol ; 500: 1-9, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209936

RESUMO

ARL13B is a small GTPase enriched in cilia. Deletion of Arl13b in mouse kidney results in renal cysts and an associated absence of primary cilia. Similarly, ablation of cilia leads to kidney cysts. To investigate whether ARL13B functions from within cilia to direct kidney development, we examined kidneys of mice expressing an engineered cilia-excluded ARL13B variant, ARL13BV358A. These mice retained renal cilia and developed cystic kidneys. Because ARL13B functions as a guanine nucleotide exchange factor (GEF) for ARL3, we examined kidneys of mice expressing an ARL13B variant that lacks ARL3 GEF activity, ARL13BR79Q. We found normal kidney development with no evidence of cysts in these mice. Taken together, our results show that ARL13B functions within cilia to inhibit renal cystogenesis during mouse development, and that this function does not depend on its role as a GEF for ARL3.


Assuntos
Doenças Renais Císticas , Rim , Animais , Camundongos , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Cílios/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Rim/metabolismo , Doenças Renais Císticas/genética
7.
bioRxiv ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36798281

RESUMO

ARL13B is a small GTPase enriched in cilia. Deletion of Arl13b in mouse kidney results in renal cysts and an associated absence of primary cilia. Similarly, ablation of cilia leads to kidney cysts. To investigate whether ARL13B functions from within cilia to direct kidney development, we examined kidneys of mice expressing an engineered cilia-excluded ARL13B variant, ARL13BV358A. These mice retained renal cilia and developed cystic kidneys. Because ARL13B functions as a guanine nucleotide exchange factor (GEF) for ARL3, we examined kidneys of mice expressing an ARL13B variant that lacks ARL3 GEF activity, ARL13BR79Q. We found normal kidney development with no evidence of cysts in these mice. Taken together, our results show that ARL13B functions within cilia to inhibit renal cystogenesis during mouse development, and that this function does not depend on its role as a GEF for ARL3.

8.
J Cell Biol ; 222(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36525027

RESUMO

Mitochondrial dysfunction in astrocytes drives neurodegenerative brain pathology. In this issue, Ignatenko et al. (2022. J. Cell. Biol.https://doi.org/10.1083/jcb.202203019) discover a novel connection between cilia and mitochondria in astrocytes, whereby mitochondrial dysfunction leads to abnormal cilia structure and a motile cilia program.


Assuntos
Astrócitos , Cílios , Mitocôndrias
10.
Transl Psychiatry ; 12(1): 66, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177588

RESUMO

The 1.6 Mb 3q29 deletion is associated with developmental and psychiatric phenotypes, including a 40-fold increased risk for schizophrenia. Reduced birth weight and a high prevalence of feeding disorders in patients suggest underlying metabolic dysregulation. We investigated 3q29 deletion-induced metabolic changes using our previously generated heterozygous B6.Del16+/Bdh1-Tfrc mouse model. Animals were provided either standard chow (STD) or high-fat diet (HFD). Growth curves were performed on HFD mice to assess weight change (n = 30-50/group). Indirect calorimetry and untargeted metabolomics were performed on STD and HFD mice to evaluate metabolic phenotypes (n = 8-14/group). A behavioral battery was performed on STD and HFD mice to assess behavior change after the HFD challenge (n = 5-13/group). We found that B6.Del16+/Bdh1-Tfrc animals preferentially use dietary lipids as an energy source. Untargeted metabolomics of liver tissue showed a strong sex-dependent effect of the 3q29 deletion on fat metabolism. A HFD partially rescued the 3q29 deletion-associated weight deficit in females, but not males. Untargeted metabolomics of liver tissue after HFD revealed persistent fat metabolism alterations in females. The HFD did not affect B6.Del16+/Bdh1-Tfrc behavioral phenotypes, suggesting that 3q29 deletion-associated metabolic and behavioral outcomes are uncoupled. Our data suggest that dietary interventions to improve weight phenotypes in 3q29 deletion syndrome patients are unlikely to exacerbate behavioral manifestations. Our study also highlights the importance of assessing sex in metabolic studies and suggests that mechanisms underlying 3q29 deletion-associated metabolic phenotypes are sex-specific.


Assuntos
Deficiência Intelectual , Esquizofrenia , Animais , Criança , Deleção Cromossômica , Deficiências do Desenvolvimento/genética , Dieta Hiperlipídica , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Esquizofrenia/complicações , Esquizofrenia/genética
11.
Mol Biol Cell ; 33(4): ar33, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196065

RESUMO

The ARF family of regulatory GTPases is ancient, with 16 members predicted to have been present in the last eukaryotic common ancestor. Our phylogenetic profiling of paralogues in diverse species identified four family members whose presence correlates with that of a cilium/flagellum: ARL3, ARL6, ARL13, and ARL16. No prior evidence links ARL16 to cilia or other cell functions, despite its presence throughout eukaryotes. Deletion of ARL16 in mouse embryonic fibroblasts (MEFs) results in decreased ciliogenesis yet increased ciliary length. We also found Arl16 knockout (KO) in MEFs to alter ciliary protein content, including loss of ARL13B, ARL3, INPP5E, and the IFT-A core component IFT140. Instead, both INPP5E and IFT140 accumulate at the Golgi in Arl16 KO lines, while other intraflagellar transport (IFT) proteins do not, suggesting a specific defect in traffic from Golgi to cilia. We propose that ARL16 regulates a Golgi-cilia traffic pathway and is required specifically in the export of IFT140 and INPP5E from the Golgi.


Assuntos
Fibroblastos , Monoéster Fosfórico Hidrolases , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cílios/metabolismo , Fibroblastos/metabolismo , Camundongos , Monoéster Fosfórico Hidrolases/metabolismo , Filogenia , Transporte Proteico , Proteínas/metabolismo
12.
Mol Biol Cell ; 33(2): ar13, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34818063

RESUMO

ELMODs are a family of three mammalian paralogues that display GTPase-activating protein (GAP) activity toward a uniquely broad array of ADP-ribosylation factor (ARF) family GTPases that includes ARF-like (ARL) proteins. ELMODs are ubiquitously expressed in mammalian tissues, highly conserved across eukaryotes, and ancient in origin, being present in the last eukaryotic common ancestor. We described functions of ELMOD2 in immortalized mouse embryonic fibroblasts (MEFs) in the regulation of cell division, microtubules, ciliogenesis, and mitochondrial fusion. Here, using similar strategies with the paralogues ELMOD1 and ELMOD3, we identify novel functions and locations of these cell regulators and compare them to those of ELMOD2, allowing the determination of functional redundancy among the family members. We found strong similarities in phenotypes resulting from deletion of either Elmod1 or Elmod3 and marked differences from those arising in Elmod2 deletion lines. Deletion of either Elmod1 or Elmod3 results in the decreased ability of cells to form primary cilia, loss of a subset of proteins from cilia, and accumulation of some ciliary proteins at the Golgi, predicted to result from compromised traffic from the Golgi to cilia. These phenotypes are reversed upon activating mutant expression of either ARL3 or ARL16, linking their roles to ELMOD1/3 actions.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Animais , Cílios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Proteínas Ativadoras de GTPase/fisiologia , Complexo de Golgi/metabolismo , Camundongos , Microtúbulos/metabolismo , Dinâmica Mitocondrial , Transdução de Sinais/genética
13.
Genetics ; 218(4)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34132778

RESUMO

Patients with the ciliopathy Joubert syndrome present with physical anomalies, intellectual disability, and a hindbrain malformation described as the "molar tooth sign" due to its appearance on an MRI. This radiological abnormality results from a combination of hypoplasia of the cerebellar vermis and inappropriate targeting of the white matter tracts of the superior cerebellar peduncles. ARL13B is a cilia-enriched regulatory GTPase established to regulate cell fate, cell proliferation, and axon guidance through vertebrate Hedgehog signaling. In patients, mutations in ARL13B cause Joubert syndrome. To understand the etiology of the molar tooth sign, we used mouse models to investigate the role of ARL13B during cerebellar development. We found that ARL13B regulates superior cerebellar peduncle targeting and these fiber tracts require Hedgehog signaling for proper guidance. However, in mouse, the Joubert-causing R79Q mutation in ARL13B does not disrupt Hedgehog signaling nor does it impact tract targeting. We found a small cerebellar vermis in mice lacking ARL13B function but no cerebellar vermis hypoplasia in mice expressing the Joubert-causing R79Q mutation. In addition, mice expressing a cilia-excluded variant of ARL13B that transduces Hedgehog normally showed normal tract targeting and vermis width. Taken together, our data indicate that ARL13B is critical for the control of cerebellar vermis width as well as superior cerebellar peduncle axon guidance, likely via Hedgehog signaling. Thus, our work highlights the complexity of ARL13B in molar tooth sign etiology.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Pedúnculo Cerebral/metabolismo , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Retina/anormalidades , Receptor Smoothened/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Orientação de Axônios , Pedúnculo Cerebral/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Receptor Smoothened/genética
15.
Mol Biol Cell ; 32(8): 800-822, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33596093

RESUMO

ELMOD2 is a GTPase-activating protein with uniquely broad specificity for ARF family GTPases. We previously showed that it acts with ARL2 in mitochondrial fusion and microtubule stability and with ARF6 during cytokinesis. Mouse embryonic fibroblasts deleted for ELMOD2 also displayed changes in cilia-related processes including increased ciliation, multiciliation, ciliary morphology, ciliary signaling, centrin accumulation inside cilia, and loss of rootlets at centrosomes with loss of centrosome cohesion. Increasing ARL2 activity or overexpressing Rootletin reversed these defects, revealing close functional links between the three proteins. This was further supported by the findings that deletion of Rootletin yielded similar phenotypes, which were rescued upon increasing ARL2 activity but not ELMOD2 overexpression. Thus, we propose that ARL2, ELMOD2, and Rootletin all act in a common pathway that suppresses spurious ciliation and maintains centrosome cohesion. Screening a number of markers of steps in the ciliation pathway supports a model in which ELMOD2, Rootletin, and ARL2 act downstream of TTBK2 and upstream of CP110 to prevent spurious release of CP110 and to regulate ciliary vesicle docking. These data thus provide evidence supporting roles for ELMOD2, Rootletin, and ARL2 in the regulation of ciliary licensing.


Assuntos
Cílios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/fisiologia , Animais , Linhagem Celular , Centrossomo/metabolismo , Cílios/fisiologia , Citocinese , Proteínas do Citoesqueleto/fisiologia , Fibroblastos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Camundongos , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Transdução de Sinais
16.
Curr Biol ; 31(2): R80-R82, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33497637

RESUMO

Recent work has resolved the established links between ß-arrestin 2 and the BBSome in controlling ciliary GPCR localization by showing that ß-arrestin 2 regulates the addition of K63-linked ubiquitin chains to tag proteins for removal from the cilia via the BBSome.


Assuntos
Cílios , Proteínas , Biologia
17.
Development ; 148(1)2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33419783
18.
Semin Cell Dev Biol ; 110: 34-42, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32732132

RESUMO

Neural development requires a series of cellular events starting with cell specification, proliferation, and migration. Subsequently, axons and dendrites project from the cell surface to form connections to other neurons, interneurons and glia. Anomalies in any one of these steps can lead to malformation or malfunction of the nervous system. Here we review the critical role the primary cilium plays in the fundamental steps of neurodevelopment. By highlighting human diseases caused by mutations in cilia-associated proteins, it is clear that cilia are essential to multiple neural processes. Furthermore, we explore whether additional aspects of cilia regulation, most notably post-translational modification of the tubulin scaffold in cilia, play underappreciated roles in neural development. Finally, we discuss whether cilia-associated proteins function outside the cilium in some aspects of neurodevelopment. These data underscore both the importance of cilia in the nervous system and some outstanding questions in the field.


Assuntos
Encéfalo/metabolismo , Cílios/metabolismo , Ciliopatias/genética , Proteínas Hedgehog/genética , Deficiência Intelectual/genética , Células de Purkinje/metabolismo , Animais , Axônios/metabolismo , Axônios/patologia , Encéfalo/anormalidades , Encéfalo/crescimento & desenvolvimento , Cílios/ultraestrutura , Ciliopatias/metabolismo , Ciliopatias/patologia , Embrião de Mamíferos , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Interneurônios/metabolismo , Interneurônios/patologia , Microtúbulos/metabolismo , Microtúbulos/patologia , Neurogênese/genética , Neuroglia/metabolismo , Neuroglia/patologia , Células de Purkinje/patologia , Via de Sinalização Wnt
19.
Mol Psychiatry ; 26(3): 772-783, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-30976085

RESUMO

The 3q29 deletion confers increased risk for neuropsychiatric phenotypes including intellectual disability, autism spectrum disorder, generalized anxiety disorder, and a >40-fold increased risk for schizophrenia. To investigate consequences of the 3q29 deletion in an experimental system, we used CRISPR/Cas9 technology to introduce a heterozygous deletion into the syntenic interval on C57BL/6 mouse chromosome 16. mRNA abundance for 20 of the 21 genes in the interval was reduced by ~50%, while protein levels were reduced for only a subset of these, suggesting a compensatory mechanism. Mice harboring the deletion manifested behavioral impairments in multiple domains including social interaction, cognitive function, acoustic startle, and amphetamine sensitivity, with some sex-dependent manifestations. In addition, 3q29 deletion mice showed reduced body weight throughout development consistent with the phenotype of 3q29 deletion syndrome patients. Of the genes within the interval, DLG1 has been hypothesized as a contributor to the neuropsychiatric phenotypes. However, we show that Dlg1+/- mice did not exhibit the behavioral deficits seen in mice harboring the full 3q29 deletion. These data demonstrate the following: the 3q29 deletion mice are a valuable experimental system that can be used to interrogate the biology of 3q29 deletion syndrome; behavioral manifestations of the 3q29 deletion may have sex-dependent effects; and mouse-specific behavior phenotypes associated with the 3q29 deletion are not solely due to haploinsufficiency of Dlg1.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Esquizofrenia , Animais , Criança , Deleção Cromossômica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Humanos , Deficiência Intelectual/genética , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Esquizofrenia/genética
20.
Am J Physiol Cell Physiol ; 319(2): C404-C418, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32520609

RESUMO

The ADP-ribosylation factor (ARF) superfamily of regulatory GTPases, including both the ARF and ARF-like (ARL) proteins, control a multitude of cellular functions, including aspects of vesicular traffic, lipid metabolism, mitochondrial architecture, the assembly and dynamics of the microtubule and actin cytoskeletons, and other pathways in cell biology. Considering their general utility, it is perhaps not surprising that increasingly ARF/ARLs have been found in connection to primary cilia. Here, we critically evaluate the current knowledge of the roles four ARF/ARLs (ARF4, ARL3, ARL6, ARL13B) play in cilia and highlight key missing information that would help move our understanding forward. Importantly, these GTPases are themselves regulated by guanine nucleotide exchange factors (GEFs) that activate them and by GTPase-activating proteins (GAPs) that act as both effectors and terminators of signaling. We believe that the identification of the GEFs and GAPs and better models of the actions of these GTPases and their regulators will provide a much deeper understanding and appreciation of the mechanisms that underly ciliary functions and the causes of a number of human ciliopathies.


Assuntos
Fatores de Ribosilação do ADP/genética , Cílios/genética , Ciliopatias/genética , GTP Fosfo-Hidrolases/genética , Fatores de Ribosilação do ADP/classificação , Cílios/metabolismo , Ciliopatias/patologia , Citoesqueleto/genética , GTP Fosfo-Hidrolases/classificação , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Microtúbulos/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...